# **AP Questions: Bonding**

#### 1975 D

Suppose that a molecule has the formula  $AB_3$ . Sketch and name two different shapes that this molecule may have. For each of the two shapes, give an example of a known molecule that has that shape. For one of the molecules you have named, interpret the shape in the context of a modern bonding theory.

#### 1976 D

 $NF_3$  and  $PF_5$  are stable molecules. Write the electron-dot formulas for these molecules. On the basis of structural and bonding considerations, account for the fact that  $NF_3$  and  $PF_5$  are stable molecules but  $NF_5$  does not exist.

#### 1979 D

Draw Lewis structures for CO<sub>2</sub>, H<sub>2</sub>, SO<sub>3</sub> and SO<sub>3</sub><sup>2-</sup> and predict the shape of each species.

#### 1982 D

- (a) Draw the Lewis electron-dot structures for  $CO_3^{2-}$ ,  $CO_2$ , and  $CO_3$ , including resonance structures where appropriate.
- (b) Which of the three species has the shortest C-O bond length? Explain the reason for your answer.
- (c) Predict the molecular shapes for the three species. Explain how you arrived at your predictions.

#### 1985 D

| Substance | Melting Point, °C |
|-----------|-------------------|
| $H_2$     | -259              |
| $C_3H_8$  | -190              |
| HF        | -92               |
| CsI       | 621               |
| LiF       | 870               |
| SiC       | >2,000            |

- (a) Discuss how the trend in the melting points of the substances tabulated above can be explained in terms of the types of attractive forces and/or bonds in these substances.
- (b) For any pairs of substances that have the same kind(s) of attractive forces and/or bonds, discuss the factors that cause variations in the strengths of the forces and/or bonds.

## 1989 D

 $CF_4$   $XeF_4$   $ClF_3$ 

- (a) Draw a Lewis electron-dot structure for each of the molecules above and identify the shape of each.
- (b) Use the valence shell electron-pair repulsion (VSEPR) model to explain the geometry of each of these molecules.

#### 1990 D

Use simple structure and bonding models to account for each of the following.

- (a) The bond length between the two carbon atoms is shorter in  $C_2H_4$  than in  $C_2H_6$ .
- (b) The H-N-H bond angle is  $107.5^{\circ}$ , in NH<sub>3</sub>.
- (c) The bond lengths in  $SO_3$  are all identical and are shorter than a sulfur-oxygen single bond.
- (d) The  $I_3^-$  ion is linear.

## 1992 D

 $NO_2$   $NO_2^ NO_2^+$ 

Nitrogen is the central atom in each of the species given above.

- (a) Draw the Lewis electron-dot structure for each of the three species.
- (b) List the species in order of increasing bond angle. Justify your answer.
- (c) Select one of the species and give the hybridization of the nitrogen atom in it.
- (d) Identify the only one of the species that dimerizes and explain what causes it to do so.

## 1994 D

Use principles of atomic structure and/or chemical bonding to answer each of the following.

(b) The lattice energy of CaO(s) is -3,460 kilojoules per mole; the lattice energy for  $K_2O(s)$  is -2,240 kilojoules per mole. Account for this difference.

|    | Ionization Energy (kJ/mol) |        |  |  |
|----|----------------------------|--------|--|--|
|    | First                      | Second |  |  |
| Κ  | 419                        | 3,050  |  |  |
| Ca | 590                        | 1,140  |  |  |

# 1995 D

The conductivity of several substances was tested using the apparatus represented by the diagram below.



The results of the tests are summarized in the following data table.

|          | AgNO<br>3 | Sucros<br>e | Na         | H <sub>2</sub> SO <sub>4</sub><br>(98%) | Key: | ++ Good conductor                                                              |
|----------|-----------|-------------|------------|-----------------------------------------|------|--------------------------------------------------------------------------------|
| Melting  | 212°      | 185°        | 99°        | Liquid at                               |      |                                                                                |
| Point    |           |             |            | Room Temp.                              |      | + Poor conductor                                                               |
| (°C)     |           |             |            |                                         |      |                                                                                |
| Liquid   | ++        | -           | ++         | +                                       |      | Nonconductor                                                                   |
| (fused)  |           |             |            |                                         |      | - Nonconductor                                                                 |
| Water    | ++        | -           | $++^{(1)}$ | $++^{(2)}$                              |      | (1) Dissolves, accompanied by evolution of flammable                           |
| Solution |           |             |            |                                         |      | gas                                                                            |
| Solid    | -         | -           | ++         | Not Tested                              |      | (2) Conduction increases as the acid is added slowly<br>and carefully to water |

Using models of chemical bonding and atomic or molecular structure, account for the differences in conductivity between the two samples in each of the following pairs.

- (a) Sucrose solution and silver nitrate solution.
- (b) Solid silver nitrate and solid sodium metal.
- (c) Liquid (fused) sucrose and liquid (fused) silver nitrate.
- (d) Liquid (concentrated) sulfuric acid and sulfuric acid solution.

## 1999 D

Answer the following questions using principles of chemical bonding and molecular structure.

- (a) Consider the carbon dioxide molecule,  $CO_2$ , and the carbonate ion,  $CO_3^{2-}$ .
- (i) Draw the complete Lewis electron-dot structure for each species.
- (ii) Account for the fact at the carbon-oxygen bond length in  $CO_3^{2-}$  is greater than the carbon-oxygen bond length in  $CO_2$ .